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1. This follows directly by the addition formulae.
2. We have already seen a proof of this formula during the lectures.

3. Thanks to Fubini’s theorem, we have
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The first formula therefore follows from the addition formula

cos(nd) cos(np) + sin(nd) sin(ny) = cos(n(d — ¢)).
Since
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we deduce that
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and the second formula follows by Fubini’s theorem.

4. By Parseval’s identity and Fubini’s theorem, we have
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5. The identity simply follows from the identity in 3. and Fubini’s theorem applied to the expression
in 4.

6. We have
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Write to simply z = r2¢’®. We then find that
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‘We deduce that
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Finally, we get
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for all @ #0 (mod 27).

We deduce that Q(r,a) < Q(1,«) for all 0 < r < 1 and that Q(r, «) — Q(1,«) for all a #
r—
0 (mod 27).

7. Using Lebesgue’s dominated convergence, we deduce that
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and since by monotone convergence, we have E,.(u) — E;(u) = E(u), we deduce by the previous
r—
expression that F(u) = D(f) < oo.

8. We estimate directly
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Therefore, we deduce that
—m—/ Q(L,0 - 9)|(8) — f(¢)[2d0 dp < o0

and we can apply the previous proof to show that E(u) = D(f), which concludes the proof of the
theorem.



