

1. This follows directly by the addition formulae.
2. We have already seen a proof of this formula during the lectures.
3. Thanks to Fubini's theorem, we have

$$|a_n|^2 = \frac{1}{\pi^2} \int_0^{2\pi} \int_0^{2\pi} f(\theta) f(\varphi) \cos(n\theta) \cos(n\varphi) d\theta d\varphi$$

$$|b_n|^2 = \frac{1}{\pi^2} \int_0^{2\pi} \int_0^{2\pi} f(\theta) f(\varphi) \sin(n\theta) \sin(n\varphi) d\theta d\varphi.$$

The first formula therefore follows from the addition formula

$$\cos(n\theta) \cos(n\varphi) + \sin(n\theta) \sin(n\varphi) = \cos(n(\theta - \varphi)).$$

Since

$$\int_0^{2\pi} \cos(n(\theta - \varphi)) d\theta = \int_0^{2\pi} \cos(n(\theta - \varphi)) d\varphi = 0,$$

we deduce that

$$\int_0^{2\pi} \int_0^{2\pi} |f(\theta)|^2 \cos(n(\theta - \varphi)) d\theta d\varphi = \int_0^{2\pi} \int_0^{2\pi} |f(\varphi)|^2 \cos(n(\theta - \varphi)) d\theta d\varphi = 0$$

and the second formula follows by Fubini's theorem.

4. By Parseval's identity and Fubini's theorem, we have

$$\begin{aligned} \frac{1}{2} \int_{B(0,r)} |\nabla u|^2 dx &= \frac{1}{2} \int_0^r \int_0^{2\pi} \left(|\partial_\rho u|^2 + \frac{1}{\rho^2} |\partial_\theta u|^2 \right) \rho d\rho d\theta \\ &= \pi \sum_{n=1}^{\infty} \int_0^r n^2 (|a_n|^2 + |b_n|^2) \rho^{2n-1} d\rho = \frac{\pi}{2} \sum_{n=1}^{\infty} n r^{2n} (|a_n|^2 + |b_n|^2). \end{aligned}$$

5. The identity simply follows from the identity in 3. and Fubini's theorem applied to the expression in 4.

6. We have

$$-2Q(r, \alpha) = \sum_{n=1}^{\infty} n r^{2n} e^{in\alpha} + \sum_{n=1}^{\infty} n r^{2n} e^{-in\alpha}.$$

Write to simply $z = r^2 e^{i\alpha}$. We then find that

$$\begin{aligned} -2Q(r, \alpha) &= z \sum_{n=1}^{\infty} n z^{n-1} + \bar{z} \sum_{n=1}^{\infty} n \bar{z}^{n-1} = \frac{z}{(1-z)^2} + \frac{\bar{z}}{(1-\bar{z}^2)} \\ &= \frac{2 \operatorname{Re}(z)(1+|z|)^2 - 4|z|^2}{(1+|z|^2 - 2 \operatorname{Re}(z))^2}. \end{aligned}$$

We deduce that

$$Q(r, \alpha) = r^2 \frac{a-b}{(a+b)^2} \text{ where } a = (1+r^2)^2 \sin^2\left(\frac{\alpha}{2}\right) \text{ and } b = (1-r^2)^2 \cos^2\left(\frac{\alpha}{2}\right).$$

Finally, we get

$$\frac{Q(r, \alpha)}{Q(1 - \alpha)} = \frac{4r^2 \sin^2(\frac{\alpha}{2})}{a+b} \frac{a-b}{a+b} \text{ for all } \alpha \neq 0 \pmod{2\pi}.$$

We deduce that $Q(r, \alpha) \leq Q(1, \alpha)$ for all $0 \leq r < 1$ and that $Q(r, \alpha) \xrightarrow[r \rightarrow 1]{} Q(1, \alpha)$ for all $\alpha \neq 0 \pmod{2\pi}$.

7. Using Lebesgue's dominated convergence, we deduce that

$$\frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} Q(r, \theta - \varphi) |f(\theta) - f(\varphi)|^2 d\theta d\varphi \xrightarrow[r \rightarrow 1]{} D(f) < \infty,$$

and since by monotone convergence, we have $E_r(u) \xrightarrow[r \rightarrow 1]{} E_1(u) = E(u)$, we deduce by the previous expression that $E(u) = D(f) < \infty$.

8. We estimate directly

$$\begin{aligned} \int_{R(\varepsilon)} Q(1, \theta - \varphi) |f(\theta) - f(\varphi)|^2 d\theta d\varphi &\leq \lim_{r \rightarrow 1} \int_{R(\varepsilon)} Q(r, \theta - \varphi) |f(\theta) - f(\varphi)|^2 d\theta d\varphi \\ &\leq \limsup_{r \rightarrow 1} \int_0^{2\pi} \int_0^{2\pi} Q(r, \theta - \varphi) |f(\theta) - f(\varphi)|^2 d\theta d\varphi \\ &= \limsup_{r \rightarrow 1} 4\pi E_r(u) = 4\pi E(u) < \infty. \end{aligned}$$

Therefore, we deduce that

$$D(f) = \lim_{\varepsilon \rightarrow 0} \frac{1}{4\pi} \int_{R(\varepsilon)} Q(1, \theta - \varphi) |f(\theta) - f(\varphi)|^2 d\theta d\varphi < \infty$$

and we can apply the previous proof to show that $E(u) = D(f)$, which concludes the proof of the theorem.